Dystrophin nonsense mutations can generate alternative rescue transcripts in lymphocytes.

نویسندگان

  • A Nishiyama
  • Y Takeshima
  • Z Zhang
  • Y Habara
  • T H T Tran
  • M Yagi
  • M Matsuo
چکیده

Secondary alterations in splicing have been reported to produce semi-functional mRNA from several nonsense mutations in the dystrophin gene. Disruptions of exonic splicing enhancers by single nucleotide changes are thought to underlie such alterations. The precise frequencies of such nonsense mutation-dependent splicing alterations, however, remain unknown. Here we analyzed the splicing patterns of dystrophin mRNA in lymphocytes from 38 patients with dystrophinopathies due to nonsense mutations in the dystrophin gene. In seven of the cases (18%), we observed partial skipping of the nonsense-encoding exon. Two of the seven cases, however, exhibited complex activation of a nonsense mutation-created splice site, which resulted in the generation of novel transcripts. Examination of cis-regulatory splicing elements through calculation of splicing probability scores and identification of potential splicing enhancer or silencer sequences failed to disclose a single cause for exon skipping. Remarkably, individual differences in splicing patterns were observed for cells from patients with identical nonsense mutations (C.5899C>T). Although five cases produced semi-functional dystrophin mRNAs, only one of these exhibited a mild clinical course. These results provide important insights about targets for exon skipping induced by candidate antisense oligonucleotides and for ribosomal read-through of nonsense mutations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Milder course in Duchenne patients with nonsense mutations and no muscle dystrophin.

Duchenne muscular dystrophy (DMD), a severe and lethal condition, is caused by the absence of muscle dystrophin. Therapeutic trials aiming at the amelioration of muscle function have been targeting the production of muscle dystrophin in affected Duchenne patients. However, how much dystrophin is required to rescue the DMD phenotype remains an open question. We have previously identified two exc...

متن کامل

Emerging genetic therapies to treat Duchenne muscular dystrophy.

PURPOSE OF REVIEW Duchenne muscular dystrophy is a progressive muscle degenerative disease caused by dystrophin mutations. The purpose of this review is to highlight two emerging therapies designed to repair the primary genetic defect, called 'exon skipping' and 'nonsense codon suppression'. RECENT FINDINGS A drug, PTC124, was identified that suppresses nonsense codon translation termination....

متن کامل

Massive Idiosyncratic Exon Skipping Corrects the Nonsense Mutation in Dystrophic Mouse Muscle and Produces Functional Revertant Fibers by Clonal Expansion

Conventionally, nonsense mutations within a gene preclude synthesis of a full-length functional protein. Obviation of such a blockage is seen in the mdx mouse, where despite a nonsense mutation in exon 23 of the dystrophin gene, occasional so-called revertant muscle fibers are seen to contain near-normal levels of its protein product. Here, we show that reversion of dystrophin expression in mdx...

متن کامل

Exon skipping for nonsense mutations in Duchenne muscular dystrophy: too many mutations, too few patients?

INTRODUCTION Duchenne muscular dystrophy (DMD), one of the most common and lethal genetic disorders, is caused by mutations of the dystrophin gene. Removal of an exon or of multiple exons using antisense molecules has been demonstrated to allow synthesis of truncated 'Becker muscular dystrophy-like' dystrophin. AREAS COVERED Approximately 15% of DMD cases are caused by a nonsense mutation. Al...

متن کامل

Gene Editing With Crispr/Cas9: A New Therapeutic Hope for Duchenne Muscular Dystrophy

In 1861, a French physician, Guillaume Duchenne, first described DMD as “pseudohypertrophic muscle paralysis” that preferentially afflicts males within families”. It is known as one of the most common X-linked diseases, DMD affects 1 in 3500 male newborns and is the result of mutations in the dystrophin gene. Dystrophin is one of the largest known genes in the human genome, containing 79 exons ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Annals of human genetics

دوره 72 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2008